Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell ; 30(11): 2838-2854, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30309899

RESUMO

Introns are removed by the spliceosome, a large macromolecular complex composed of five ribonucleoprotein subcomplexes (U snRNPs). The U1 snRNP, which binds to 5' splice sites, plays an essential role in early steps of the splicing reaction. Here, we show that Arabidopsis thaliana LETHAL UNLESS CBC7 (LUC7) proteins, which are encoded by a three-member gene family in Arabidopsis, are important for plant development and stress resistance. We show that LUC7 is a U1 snRNP accessory protein by RNA immunoprecipitation experiments and LUC7 protein complex purifications. Transcriptome analyses revealed that LUC7 proteins are not only important for constitutive splicing, but also affect hundreds of alternative splicing events. Interestingly, LUC7 proteins specifically promote splicing of a subset of terminal introns. Splicing of LUC7-dependent introns is a prerequisite for nuclear export, and some splicing events are modulated by stress in a LUC7-dependent manner. Taken together, our results highlight the importance of the U1 snRNP component LUC7 in splicing regulation and suggest a previously unrecognized role of a U1 snRNP accessory factor in terminal intron splicing.


Assuntos
Ribonucleoproteína Nuclear Pequena U1/metabolismo , Spliceossomos/metabolismo , Processamento Alternativo/genética , Processamento Alternativo/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Íntrons/genética , Íntrons/fisiologia , Ligação Proteica/genética , Ligação Proteica/fisiologia , Splicing de RNA/genética , Splicing de RNA/fisiologia
2.
Plant J ; 82(6): 1018-1029, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25976549

RESUMO

The THO/TREX complex mediates transport of nascent mRNAs from the nucleus towards the cytoplasm in animals, and has a role in small interfering RNA-dependent processes in plants. Here we describe five mutant alleles of Arabidopsis thaliana THO2, which encodes a core subunit of the plant THO/TREX complex. tho2 mutants present strong developmental defects resembling those in plants compromised in microRNA (miRNA) activity. In agreement, not only were the levels of siRNAs reduced in tho2 mutants, but also those of mature miRNAs. As a consequence, a feedback mechanism is triggered, increasing the amount of miRNA precursors, and finally causing accumulation of miRNA-targeted mRNAs. Yeast two-hybrid experiments and confocal microscopy showed that THO2 does not appear to interact with any of the known miRNA biogenesis components, but rather with the splicing machinery, implying an indirect role of THO2 in small RNA biogenesis. Using an RNA immunoprecipitation approach, we found that THO2 interacts with miRNA precursors, and that tho2 mutants fail to recruit such precursors into the miRNA-processing complex, explaining the reduction in miRNA production in this mutant background. We also detected alterations in the splicing pattern of genes encoding serine/arginine-rich proteins in tho2 mutants, supporting a previously unappreciated role of the THO/TREX complex in alternative splicing.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/metabolismo , Processamento Alternativo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação , Plantas Geneticamente Modificadas , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...